Decentralized Systems Engineering

CS-438 — Fall 2024

DED'S Pierluca Borso-Tan EPFL

Credits: Netflix, DynaTrace, Wikimedia Commons

Software Quality for
Decentralized and Distributed Systems

Or: How | Learned to Stop Worrying & Love the Tests

Roadmap for the (intense) day

e Why You Should Care

e Managing Quality & Software Dev Lifecycle

e Software testing — basic principles

e Testing distributed & decentralized systems

e Chaos engineering

e Developing a testing & evaluation strategy (worked out examples)

e Testing & Evaluation Tools in Go

What does a bug look like to you?
Say, an integer overflow

June 4, 1996

Of the Need to Manage Defects
A $370 million example: Ariane 5 (1996)

Converting a 64-bit float into a signed 16-bit integer.

Of the Need to Manage Defects
A deadly example: Therac-25 (1980s)

A race condition caused patients to receive 100x radiation dosage.

Of the Need to Manage Defects
A sinister example: Fujitsu Horizon (2000-2020)

Fujitsu’s Horizon software said UK Post Office staff were stealing money.
Bugs led to lawsuits, 700+ people found guilty.

Dozens were sent to jail.

Some faced bankruptcy, others committed suicide.

https://en.wikipedia.org/wiki/British_Post_Office_scandal

https://en.wikipedia.org/wiki/British_Post_Office_scandal

Quality — a definition

What does it mean in business, engineering & manufacturing ?
According to Wikipedia:
e the non-inferiority or superiority of something

e being suitable for its intended use (fithess for purpose)

while satisfying customer expectations.

Quality — a simpler view

e Building the right thing, satisfying customer needs

— partially out of scope today
e Building the thing right, to specification & within tolerance

e Preventing defects and keeping costs under control

When should you start thinking about quality in a project?

Software Quality — How ?

e Tools
IDE autocompletion, static analysis / linters, testing, CI/CD, etc.

e Processes
Code review, pair programming, test-driven development, etc.

e Measurements
Software complexity, code coverage, etc.

e Documentation
Requirements documents, code style, traceability matrix, etc.

Software Quality

IDENTIFY

As continuous improvement OPPORTUNITIES

And investment

CONTINUOUS
Wae=pisy IMPROVEMENT (ievivie

(Cn

Software Quality — Summary

e A way to ensure engineering leads to a “good” solution
o Functionally
o Structurally

e A consideration throughout the project lifecycle
e An (empowering) constraint on the development

e An investment to ensure success

Managing Software Projects

Like any project, need to:

e Manage limited resources
e Keep costs under control

e Manage risks (i.e. bad stuff happening)
o Reduce probability

o Reduce impact

e Quality supports this !

Software Development Lifecycle
A reminder

Software Architectual
Development Design

Quality and Cost — A Balancing Act

e Quality assurance measures are not free !
e Defects are even more expensive !

e \What's the trade-off ?

Relative cost of bug to fix

Quality and Cost
A balancing act

Cost of fixing bugs at various stages of software delivery

50x

10

< 1x 1x —

150x

Requirements Design Development Testing Staging

Production

Quality and Cost
Technical debt

TECHNICAL DEBT

T DON'T
UNDERSTAND
WHY IT TAKES
50 LONG T0

ADD A NEW
WINDOW.

Quality and Cost
Technical debt

Reckless

“We don’t have time
for design”

Deliberate

Prudent

“We must ship now
and deal with
consequences”

Inadvertent

“What's Layering?”

“Now we know how we
should have done it”

22

Requirements & Specifications

e Functional requirements
e.g. “The user can reset a forgotten password”

e Non-functional requirements
e.g. “The system should respond to 99% of the requests within 100ms”

e Quality impact:
o Shared understanding of the product
o Allow detection of “specification” bugs
o Informs the system design
o Informs the security of the system (threat model)

Architecture & Design

Architecture & Design

UML ?

Shopping Cart

-id

- productld

User

-id

- email

- password
- lastLogin

+ getSession()

Customer

+ addProductToCart()
+ removeProductFromCart()
+ checkOut()

- name
- billingAddress
- defaultShippingAddress

+ signUp()
+login()

Orders

-id

- customerld
- orderDate
- status

- price

+ updateOrderStatus()
+ placeOrder()
+ cancelOrder()

g

i

Order Details

-id

- orderld

- shippingAddress
- shippingType

- shippingCost

- billingAddress

- createdDate

+ cancelOrder()

Architecture & Design

Component diagram?

SHE Conpeclrs

FoA CpenSocial <
Linkeglin

User

/ :x R
Faoaborsk

Usar

2 |l
prpncary

P
any platfamm

Usar

Schalarlib Core Servces

ui El

(l\ search
! Hlerms + annotations

?
2]

Anpotaicng

gedtams
5

schalady itemes

o]

geldrralations

CL Conrectars

Il

any

dala s0urce

Sowiport

| HTTE }F'J'H 'mﬂﬂq

3
)

e — e

other

)

Architecture & Design
Layered ? Ad-hoc ?

Layer Browser (Chrome)

¥
g

)
Enterprise domino risk | | Scene simulation Data system Fid

-assessment H ma i

E chemical industry i
! ldonnly. potential °
Exploration of acaident | | sccdents 9

causes ' Calculate physical effects

: ! Calculate escalation R
Application robabili *
uy‘f f.'.'-'-'-'.'-'.'-'-'-'-'.:‘-'-'-'.'-'-'-'-'-'-‘ B (-
| | i °
[—l assessment r
Create, save, export..... H d
e
r

¢ 1

El User control]é I Image Manager l

8 1 ry

| N e .
' S e e :

%} O data exchange

m‘ Stored Data cache self-defining | Transaction database reading Monte carlo

Layer rocedure function L and writi bability tool

Data

Layer [Cache : Redis Memcached “ Persistent Stores : Sqlserver]

| =

Why & When is architecture important for quality ?

Architecture & Design

e Shared understanding of the software
e Easier to reason about than code

e Reduces complexity

e Divide & conquer

e Manage risk (throughout the lifecycle)

Implementation — Why Clean Code Matters

e Code should be written for readability
e Reviewers will detect bugs more easily
e Automatic tools will understand it better
e Maintainers will find it easy to modify

e Quality impact:
- A bad implementation will kill your project.

Testing — Because your code is buggy (& mine too)

e Detect bugs at all levels (unit, integration, system, etc.)
e Detect defects with respect to specification

e What else is testing good for ?
System documentation !

e Quality impact:
- Limited, poor or absent testing will cost you down the road.

...and it will cost ALOT!

Testing
The Pyramid

Acceptance Testing

- System Testing

Integration Testing

Unit Testing

Deployment — Because your code is still buggy !

e Ensure repeatability and consistency
e Detect defects in production, ideally before the users !

e Observability — making the application behaviour “visible” in production
o Metrics
o LOQS
o Stack traces
o Traces

e If something goes wrong, this is your debug information !

Observability — Traces

Cart Service Database
Trace-
context _—
Trace-
context
— ® — @
“Checkout” click Gateway Frontend \
Trace-
context
Checkout Payment provider
Service (external)

Span: UserAction “Checkout”
Span: Gateaway/cart/checkout

Span: Frontend/cart/checkout

Span: getCurrentCart Span: InitiateCheckout

Span: Checkout

Span: finishPayment Span: storelnvoice
Span: Database Span: Payment provider

Time

Managing Software Quality — Summary

e Each software lifecycle stage impacts the subsequent ones

e Prevent defects whenever possible
e Detect them as soon as possible

e Perverasive concerns: traceability, repeatability
e Nobody likes documentation, but it’'s fundamental

e It's an investment, always evaluate its return

Testing basics

e Atestis a way to determine if an artifact meets its requirements
o Afunction’s API
o A system’s specification
o A given user experience

e Along a specific axis:
functionality, performance, security, resilience, etc.

e Types
Unit, integration, system (end-to-end), user acceptance, exploratory,
smoke, staging (pre-production), A/B testing (in production), etc.

How are developers and testers different ?

Psychology of testing — mindset matters

e Developer
wants to see things work, build them
focuses on what the system should be doing
—> solution-oriented work

e Tester
wants to break things
focuses on what the user expects
—> problem-oriented work

The (Manual) Test Case

Documenting the what with the how

TestScenario ID | Login-1 TestCaselD | Login-1A
TestCase Login— Positive testcase Test Priority High
Description
Pre-Requisite Avalid useraccount Post-Requisite | NA
Test Execution Steps:
S.No | Action Inputs Expected Actual Test Test Test
Output Output Brows | Result | Comments
er
1 Launch https://www.fac | Facebook Facebook | IE-11 | Pass [Priya
application | ebook.com/ home home 10/17/2017
11:44 AM]:
Launch
successful
2 Enter Email id : Login success | Login IE-11 | Pass [Priya
correct test@xyz.com success 10/17/2017
Email & Password: 11:45 AM]:
Password FEEIIE Login
and hit successful
login
button

Automated Tests — the “right” way

e Reproducible (not “flaky”)

e Isolated (testing one thing only)

e Independent from each other

e Self-contained

e Same code quality as production code

- Tests are an investment, aim for a good return-on-investment !

Manual vs Automatic testing
A clear trade-off

Investment (creation)

Investment
(maintenance)

Investment (execution)

Flaws

Manual testing

Lower reliability, human errors

Automatic testing

Depends on code quality, tooling cost,
requirements change, ...

Sometimes nearly impossible,
test code can also have bugs,

Unigue advantages

Human adaptability, user pers

pective Immediate results, reusability,

Practical for

What do you think?

Naive test case automation

What if replaced testers with computers?

e Hard to develop
e Hard to debug

e They come in too late in the development !

Relative cost of bug to fix

Quality and Cost
A reminder

Cost of fixing bugs at various stages of software delivery

150x%
50x
25x%
10%
< 1x x -
Requirements Design Development Testing Staging Production

44

Metrics

if you can’t measure it, you can’t improve it!

e Code coverage

e Mutation coverage

e Code complexity

e Historical bug location
e Automatic ratings

e Risk

e Derived metrics, e.g. complexity vs. coverage

Review of basic concepts

Unit test
Integration test
End-to-end test

Mocking
Dependency Injection

Fuzzing
Property-based tests
Formal verification
Model checking

Unit testing
Dealing with coupling

REAL SYSTEM CLASS IN UNIT TEST

I

—

Green = class in focus Green = class in focus
Yellow = dependencies Yellow = mocks for the unit test
Grey = other unrelated classes

Unit testing — Outcomes

e Find defects early

e A failing unit test makes the defect obvious
e Better functional / class design

e Reduction of complexity (hard to test)

e Increased code coverage

Mocks, Stubs, Fakes
A word about terminology

A function/object/etc. could be mocked in a number of ways
Stub - pure data
« Mock - data and calls
- Fake - fake implementation
Spy - real object, extended with partial mocking

Dummy - necessary object, unused in tests

Language Tooling
How to make this work

Concepts span all languages, but each has its own tooling.
A few selected tools:

1. Go testing, testify/require, gomock, gremlins
2. Java Junit, Mockito, JMock, PITest, etc.

3. Scala ScalaTest, Mockito, Stryker, etc.

4. JavaScript jest ... Or jasmine, mocha, sinon, etc.

... and sometimes you might have to roll your own

Integration testing
Dealing with coupling

REAL SYSTEM INTEGRATION TESTS

Green = class in focus Green = code under test

Yellow = dependencies Vellow =test support (mocks?)
Grey = other unrelated classes

Integration Testing
Key points

« “Integration” can happen at all scales (classes, modules/packages, ...)

« Tools depend on the job: no silver bullet
o like unit tests
o like end-to-end (E2E) tests
) custom

« Typical mocks when testing business logic:
o database
o network
o external APIs
o filesystem

Integration Testing
A few examples

1. Testing how 2-3 classes work together

2. Web: testing the user interface without a backend

3. Server: testing an API endpoint (without a database)
4. Distributed: testing interaction between a few systems

5. PoP: testing the processing of incoming messages

End-to-End Testing
Key points

« “End-to-end”, because it involves the whole system (-ish)

« Tools are completely dependent on the test objective,
the system under test and the domain

embedded? browser-based? server infrastructure ?
dedicated testing tool? bash script?

« Automates “using the software”

« Generally:
o the slowest tests
o detect defects, but not their cause

Property-Based Testing

Define a test as:
- A given input data shape
An operation on the input
« A given set of expectations

The test runner will;
1. generate the data
2. try to prove the expectations wrong

Property-Based Testing
An arithmetic example

// function under test
int add(int a, int b) {
return a+b;

@Property
boolean sumIsCommutative(
@ForAll int a, @ForAll int b

a return add(a,b) == add(b,a);
}
@Property
boolean sumIdentity(@ForAll int a)
{
return add(a,@) == a;
}

@Property
boolean sumIsAssociative(
@ForAll int a, @ForAll int b, @ForAll int c
) {
return add(add(a,b),c) == add(a,add(b,c));

@Property
boolean sumTwiceIsMultiplication(@ForAll int a)

{

return add(a,a) == 2*a;

@Property
boolean sumOnelIncreases(@ForAll int a)

{

return add(a,l) > a;

Question time !

So, what kind of tests shall we start with and why 7

Basic Good Practices

Mature Testing System
e At all levels: unit, integration, system

Separate Environments
e Development

e Staging

e Production

Full Observability in Production
e Centralized log

e Metrics

e Traces

Distributed System Tests
S0 many parameters ...

- What is the testing objective?
- What are the parameters we want to control?
How do you make the tests reproducible?

« How would you do it in practice ?

Case Study — A distributed, embedded system

Covid Contact-Tracing System

Specification:

1. Radio-based distance measure
2. Support up to 16 devices

Radio
Frequency

Implementation:

1. Separate HW boards
2. Finite State Machine-based
communication protocol

Challenges in distributed / decentralized systems
e The network is an uncontrolled variable
e (Virtually) infinite number of states
e Failures can happen at any layer (network, HW, OS, application, ...)

e Many software versions may coexist

o Backward compatibility
o Forward compatibility
o Application invariants across versions

e Subtle environment differences can mask issues

Jepsen — Testing Distributed Storage Systems

e Full suite of tools to evaluate distributed systems
They've “broken” dozens of major, well-known systems
Approach:
e They test real systems, running on real clusters (1-4 months of work)
e They test under failure modes: faulty networks, unsync’'d clocks, etc.

e They make abundant use of generative testing:

- apply (many, many) random operations to the system
—> build a “concurrent history” of the results

—> check history against a model to ensure correctness / verify invariants

https://iepsen.io/

https://jepsen.io/

Testing (Permissioned) Blockchain Nodes

Unique challenges:

e Node robustness during upgrades ?

e Can old and new versions communicate without failures ?
e Smart contract determinism across versions ?

e Impact of failures ?

Solutions:

e Formal verification (where feasible)

e Testing latest version against baseline

e Testing mixed environments, including under failure scenarios
e Testing upgrade paths, including under failure scenarios

Case Study — Netflix

Case Study — Netflix

e Key metric: Stream “play” Per Second (SPS)
e Actual video data comes their content distribution network
e All the logic (incl. Stream play) comes from their microservices

e Hundreds of microservice clusters
- how do you not break anything ?

Chaos Monkey & Chaos Kong

How can we ...

(cp)

uﬁhu

e test that an application is resilient to a cloud region’s unavailability ?

e testthat a VM’s unavailability has no consequences ?
- Kill them!
- Kill them at random !

-2 Kill it !
- Run a “Chaos Kong” exercise !

Chaos Kong — A Metrics Perspective

ﬁ

Video Play
(SPS)

@ o e we RO Wi WP

Video Play
(SPS)

P we R oW Wi A& P @ W\ W we Wi P

Beyond Chaos — Fault Injection Testing

e Chaos Monkey and Chaos Kong are limited by granularity

How can we test a hypothesis ?
e Redirect traffic to control/experimental group resources
e Choose % of traffic going to each

_ _ Cee 99%
What kind of hypothesis ? Gateway (<O APl O

e Arbitrary failures ! ® 0.5%

: *| API Control
client, server, network, OS, ... 5%

0
e Arbitrary scope !
single VM, whole cluster, whole region, ...

Beyond Chaos — Fault Injection Testing

How do you minimize the blast radius?
e If control/experimental group deviate, abort experiment automatically !

e Deviations are measured locally, upstream and globally !

Many non-trivial engineering considerations

e Assigning requests to groups T —
. o ” . Gatewa O API O Ratings
e Dealing with “retry” mechanisms
: : ® 0.5%
e Analyzing only experimental data « o

.]
e How do we inject faults 0.5%

Chaos Engineering

Goal:
e Run scientific experiments on production systems

Requirements:
e Strong observability of the system (= good monitoring)
e “Mature” testing environment (= moderately reliable software)
e Enough usage to measure a “steady state” in the system
hypothesis: “steady state” will continue in both experimental & control groups

e Infrastructure-level separation between experimental and control groups

Then:
e Inject a failure in the experimental group and observe

Chaos Engineering — Advanced Principles

e Risk management: focus on likely / impactful events

e Run experiments in production

e Automate: experiments should run periodically / continuously
e Minimize blast radius: users should not be impacted !

e \Want tools & resources ?
https://github.com/dastergon/awesome-chaos-engineering

https://github.com/dastergon/awesome-chaos-engineering

	Slide 1: Decentralized Systems Engineering
	Slide 2: Software Quality for Decentralized and Distributed Systems
	Slide 3: Roadmap for the (intense) day
	Slide 4: Why You Should Care
	Slide 5
	Slide 6
	Slide 7: Of the Need to Manage Defects A $370 million example: Ariane 5 (1996)
	Slide 8: Of the Need to Manage Defects A deadly example: Therac-25 (1980s)
	Slide 9: Of the Need to Manage Defects A sinister example: Fujitsu Horizon (2000-2020)
	Slide 10: Quality – a definition
	Slide 11: Quality – a simpler view
	Slide 12
	Slide 13: Software Quality – How ?
	Slide 14: Software Quality
	Slide 15: Software Quality – Summary
	Slide 16: Managing Software Quality
	Slide 17: Managing Software Projects
	Slide 18: Software Development Lifecycle A reminder
	Slide 19: Quality and Cost – A Balancing Act
	Slide 20: Quality and Cost A balancing act
	Slide 21: Quality and Cost Technical debt
	Slide 22: Quality and Cost Technical debt
	Slide 23: Requirements & Specifications
	Slide 24: Architecture & Design
	Slide 25: Architecture & Design UML ?
	Slide 26: Architecture & Design Component diagram?
	Slide 27: Architecture & Design Layered ? Ad-hoc ?
	Slide 28
	Slide 29: Architecture & Design
	Slide 30: Implementation – Why Clean Code Matters
	Slide 31: Testing – Because your code is buggy (& mine too)
	Slide 32: Testing The Pyramid
	Slide 33: Deployment – Because your code is still buggy !
	Slide 34: Observability – Traces
	Slide 35: Managing Software Quality – Summary
	Slide 36: Testing and Breaking Stuff !
	Slide 37: Testing basics
	Slide 38
	Slide 39: Psychology of testing – mindset matters
	Slide 40: The (Manual) Test Case Documenting the what with the how
	Slide 41: Automated Tests – the “right” way
	Slide 42: Manual vs Automatic testing A clear trade-off
	Slide 43: Naive test case automation What if replaced testers with computers?
	Slide 44: Quality and Cost A reminder
	Slide 45: Metrics if you can’t measure it, you can’t improve it!
	Slide 46: Review of basic concepts
	Slide 47: Unit testing Dealing with coupling
	Slide 48: Unit testing – Outcomes
	Slide 49: Mocks, Stubs, Fakes A word about terminology
	Slide 50: Language Tooling How to make this work
	Slide 51: Integration testing Dealing with coupling
	Slide 52: Integration Testing Key points
	Slide 53: Integration Testing A few examples
	Slide 54: End-to-End Testing Key points
	Slide 55: Property-Based Testing
	Slide 56: Property-Based Testing An arithmetic example
	Slide 57: Question time !
	Slide 58: Distributed & Decentralized Testing
	Slide 59: Basic Good Practices
	Slide 60: Distributed System Tests So many parameters ...
	Slide 61
	Slide 62: Challenges in distributed / decentralized systems
	Slide 63: Jepsen – Testing Distributed Storage Systems
	Slide 64: Testing (Permissioned) Blockchain Nodes
	Slide 65: Case Study – Netflix
	Slide 66: Case Study – Netflix
	Slide 67: Chaos Monkey & Chaos Kong
	Slide 68: Chaos Kong – A Metrics Perspective
	Slide 69: Beyond Chaos – Fault Injection Testing
	Slide 70: Beyond Chaos – Fault Injection Testing
	Slide 71: Chaos Engineering
	Slide 72: Chaos Engineering – Advanced Principles

