
Decentralized Systems Engineering

CS-438 – Fall 2024

Pierluca Borsò-Tan

Credits: Netflix, DynaTrace, Wikimedia Commons

Software Quality for

Decentralized and Distributed Systems

Or: How I Learned to Stop Worrying & Love the Tests

Roadmap for the (intense) day

● Why You Should Care

● Managing Quality & Software Dev Lifecycle

● Software testing – basic principles

● Testing distributed & decentralized systems

● Chaos engineering

● Developing a testing & evaluation strategy (worked out examples)

● Testing & Evaluation Tools in Go

Why You Should Care

What does a bug look like to you?
Say, an integer overflow

June 4, 1996

Converting a 64-bit float into a signed 16-bit integer.

Of the Need to Manage Defects
A $370 million example: Ariane 5 (1996)

A race condition caused patients to receive 100x radiation dosage.

Of the Need to Manage Defects
A deadly example: Therac-25 (1980s)

Fujitsu’s Horizon software said UK Post Office staff were stealing money.
Bugs led to lawsuits, 700+ people found guilty.
Dozens were sent to jail.
Some faced bankruptcy, others committed suicide.

https://en.wikipedia.org/wiki/British_Post_Office_scandal

Of the Need to Manage Defects
A sinister example: Fujitsu Horizon (2000-2020)

https://en.wikipedia.org/wiki/British_Post_Office_scandal

Quality – a definition

What does it mean in business, engineering & manufacturing ?

According to Wikipedia:

● the non-inferiority or superiority of something

● being suitable for its intended use (fitness for purpose)

while satisfying customer expectations.

Quality – a simpler view

● Building the right thing, satisfying customer needs

→ partially out of scope today

● Building the thing right, to specification & within tolerance

● Preventing defects and keeping costs under control

When should you start thinking about quality in a project?

Software Quality – How ?

● Tools

IDE autocompletion, static analysis / linters, testing, CI/CD, etc.

● Processes

Code review, pair programming, test-driven development, etc.

● Measurements

Software complexity, code coverage, etc.

● Documentation

Requirements documents, code style, traceability matrix, etc.

Software Quality

As continuous improvement

And investment

$...

Software Quality – Summary

● A way to ensure engineering leads to a “good” solution

○ Functionally

○ Structurally

● A consideration throughout the project lifecycle

● An (empowering) constraint on the development

● An investment to ensure success

Managing
Software Quality

Managing Software Projects

Like any project, need to:

● Manage limited resources

● Keep costs under control

● Manage risks (i.e. bad stuff happening)

○ Reduce probability

○ Reduce impact

● Quality supports this !

Software Development Lifecycle
A reminder

Quality and Cost – A Balancing Act

● Quality assurance measures are not free !

● Defects are even more expensive !

● What’s the trade-off ?

Requirements

< 1x

Quality and Cost
A balancing act

Quality and Cost
Technical debt

Quality and Cost
Technical debt

22

Requirements & Specifications

● Functional requirements

e.g. “The user can reset a forgotten password”

● Non-functional requirements

e.g. “The system should respond to 99% of the requests within 100ms”

● Quality impact:

○ Shared understanding of the product

○ Allow detection of “specification” bugs

○ Informs the system design

○ Informs the security of the system (threat model)

Architecture & Design

Architecture & Design
UML ?

Architecture & Design
Component diagram?

Architecture & Design
Layered ? Ad-hoc ?

Why & When is architecture important for quality ?

Architecture & Design

● Shared understanding of the software

● Easier to reason about than code

● Reduces complexity

● Divide & conquer

● Manage risk (throughout the lifecycle)

Implementation – Why Clean Code Matters

● Code should be written for readability

● Reviewers will detect bugs more easily

● Automatic tools will understand it better

● Maintainers will find it easy to modify

● Quality impact:

→ A bad implementation will kill your project.

Testing – Because your code is buggy (& mine too)

● Detect bugs at all levels (unit, integration, system, etc.)

● Detect defects with respect to specification

● What else is testing good for ?

System documentation !

● Quality impact:

→ Limited, poor or absent testing will cost you down the road.

... and it will cost A LOT !

Testing
The Pyramid

Deployment – Because your code is still buggy !

● Ensure repeatability and consistency

● Detect defects in production, ideally before the users !

● Observability – making the application behaviour “visible” in production

○ Metrics

○ Logs

○ Stack traces

○ Traces

● If something goes wrong, this is your debug information !

Observability – Traces

Managing Software Quality – Summary

● Each software lifecycle stage impacts the subsequent ones

● Prevent defects whenever possible

● Detect them as soon as possible

● Perverasive concerns: traceability, repeatability

● Nobody likes documentation, but it’s fundamental

● It’s an investment, always evaluate its return

Testing and
Breaking Stuff !

Testing basics

● A test is a way to determine if an artifact meets its requirements
○ A function’s API

○ A system’s specification

○ A given user experience

● Along a specific axis:

functionality, performance, security, resilience, etc.

● Types

Unit, integration, system (end-to-end), user acceptance, exploratory,

smoke, staging (pre-production), A/B testing (in production), etc.

How are developers and testers different ?

Psychology of testing – mindset matters

● Developer

wants to see things work, build them

focuses on what the system should be doing

→ solution-oriented work

● Tester

wants to break things

focuses on what the user expects

→ problem-oriented work

The (Manual) Test Case
Documenting the what with the how

Automated Tests – the “right” way

● Reproducible (not “flaky”)

● Isolated (testing one thing only)

● Independent from each other

● Self-contained

● Same code quality as production code

→ Tests are an investment, aim for a good return-on-investment !

Manual testing Automatic testing

Investment (creation) Low Medium to Significant

Investment

(maintenance)

Very low Depends on code quality, tooling cost,

requirements change, ...

Investment (execution) Massive Minimal, unattended

Flaws Lower reliability, human errors Sometimes nearly impossible,

test code can also have bugs,

Unique advantages Human adaptability, user perspective Immediate results, reusability,

Practical for What do you think?

Manual vs Automatic testing
A clear trade-off

Naive test case automation
What if replaced testers with computers?

● Hard to develop

● Hard to debug

● They come in too late in the development !

Requirements

< 1x

Quality and Cost
A reminder

44

Metrics
if you can’t measure it, you can’t improve it!

● Code coverage

● Mutation coverage

● Code complexity

● Historical bug location

● Automatic ratings

● Risk

● Derived metrics, e.g. complexity vs. coverage

Review of basic concepts

● Unit test

● Integration test

● End-to-end test

● Mocking

● Dependency Injection

● Fuzzing

● Property-based tests

● Formal verification

● Model checking

Unit testing
Dealing with coupling

Unit testing – Outcomes

● Find defects early

● A failing unit test makes the defect obvious

● Better functional / class design

● Reduction of complexity (hard to test)

● Increased code coverage

A function/object/etc. could be mocked in a number of ways

• Stub - pure data

• Mock - data and calls

• Fake - fake implementation

• Spy - real object, extended with partial mocking

• Dummy - necessary object, unused in tests

Mocks, Stubs, Fakes
A word about terminology

Concepts span all languages, but each has its own tooling.
A few selected tools:

1. Go testing, testify/require, gomock, gremlins

2. Java JUnit, Mockito, JMock, PITest, etc.

3. Scala ScalaTest, Mockito, Stryker, etc.

4. JavaScript jest … or jasmine, mocha, sinon, etc.

... and sometimes you might have to roll your own

Language Tooling
How to make this work

Integration testing
Dealing with coupling

INTEGRATION TESTS

Green = code under test

Yellow = test support (mocks?)

• “Integration” can happen at all scales (classes, modules/packages, ...)

• Tools depend on the job: no silver bullet
o like unit tests
o like end-to-end (E2E) tests
o custom

• Typical mocks when testing business logic:
o database
o network
o external APIs
o filesystem

Integration Testing
Key points

1. Testing how 2-3 classes work together

2. Web: testing the user interface without a backend

3. Server: testing an API endpoint (without a database)

4. Distributed: testing interaction between a few systems

5. PoP: testing the processing of incoming messages

Integration Testing
A few examples

• “End-to-end”, because it involves the whole system (-ish)

• Tools are completely dependent on the test objective,
the system under test and the domain

embedded? browser-based? server infrastructure ?

dedicated testing tool? bash script?

• Automates “using the software”

• Generally:
o the slowest tests
o detect defects, but not their cause

End-to-End Testing
Key points

Define a test as:

• A given input data shape

• An operation on the input

• A given set of expectations

The test runner will:

1. generate the data

2. try to prove the expectations wrong

Property-Based Testing

Property-Based Testing
An arithmetic example

@Property

boolean sumIsCommutative(

@ForAll int a, @ForAll int b

) {

return add(a,b) == add(b,a);

}

@Property

boolean sumIsAssociative(

@ForAll int a, @ForAll int b, @ForAll int c

) {

return add(add(a,b),c) == add(a,add(b,c));

}

// function under test

int add(int a, int b) {

return a+b;

}

@Property

boolean sumIdentity(@ForAll int a)

{

return add(a,0) == a;

}

@Property

boolean sumTwiceIsMultiplication(@ForAll int a)

{

return add(a,a) == 2*a;

}

@Property

boolean sumOneIncreases(@ForAll int a)

{

return add(a,1) > a;

}

So, what kind of tests shall we start with and why ?

Question time !

Distributed &
Decentralized
Testing

Basic Good Practices

Mature Testing System

● At all levels: unit, integration, system

Separate Environments

● Development

● Staging

● Production

Full Observability in Production

● Centralized log

● Metrics

● Traces

• What is the testing objective?

• What are the parameters we want to control?

• How do you make the tests reproducible?

• How would you do it in practice ?

Distributed System Tests
So many parameters ...

Covid Contact-Tracing System

Specification:

1. Radio-based distance measure
2. Support up to 16 devices

Implementation:

1. Separate HW boards
2. Finite State Machine-based

communication protocol

Radio

Frequency

Case Study – A distributed, embedded system

Challenges in distributed / decentralized systems

● The network is an uncontrolled variable

● (Virtually) infinite number of states

● Failures can happen at any layer (network, HW, OS, application, ...)

● Many software versions may coexist
○ Backward compatibility

○ Forward compatibility

○ Application invariants across versions

● Subtle environment differences can mask issues

Jepsen – Testing Distributed Storage Systems

● Full suite of tools to evaluate distributed systems

They’ve “broken” dozens of major, well-known systems

Approach:

● They test real systems, running on real clusters (1-4 months of work)

● They test under failure modes: faulty networks, unsync’d clocks, etc.

● They make abundant use of generative testing:

→ apply (many, many) random operations to the system

→ build a “concurrent history” of the results

→ check history against a model to ensure correctness / verify invariants

https://jepsen.io/

https://jepsen.io/

Testing (Permissioned) Blockchain Nodes

Unique challenges:

● Node robustness during upgrades ?

● Can old and new versions communicate without failures ?

● Smart contract determinism across versions ?

● Impact of failures ?

Solutions:

● Formal verification (where feasible)

● Testing latest version against baseline

● Testing mixed environments, including under failure scenarios

● Testing upgrade paths, including under failure scenarios

Case Study – Netflix

Case Study – Netflix

● Key metric: Stream “play” Per Second (SPS)

● Actual video data comes their content distribution network

● All the logic (incl. Stream play) comes from their microservices

● Hundreds of microservice clusters

→ how do you not break anything ?

Chaos Monkey & Chaos Kong

How can we ...

● test that a VM’s unavailability has no consequences ?

→ Kill them !

→ Kill them at random !

● test that an application is resilient to a cloud region’s unavailability ?

→ Kill it !

→ Run a “Chaos Kong” exercise !

Chaos Kong – A Metrics Perspective

Video Play

(SPS)

Video Play

(SPS)

Beyond Chaos – Fault Injection Testing

● Chaos Monkey and Chaos Kong are limited by granularity

How can we test a hypothesis ?

● Redirect traffic to control/experimental group resources

● Choose % of traffic going to each

What kind of hypothesis ?

● Arbitrary failures !

client, server, network, OS, ...

● Arbitrary scope !

single VM, whole cluster, whole region, ...

Beyond Chaos – Fault Injection Testing

How do you minimize the blast radius?

● If control/experimental group deviate, abort experiment automatically !

● Deviations are measured locally, upstream and globally !

Many non-trivial engineering considerations

● Assigning requests to groups

● Dealing with “retry” mechanisms

● Analyzing only experimental data

● How do we inject faults

Chaos Engineering

Goal:

● Run scientific experiments on production systems

Requirements:

● Strong observability of the system (= good monitoring)

● “Mature” testing environment (= moderately reliable software)

● Enough usage to measure a “steady state” in the system

hypothesis: “steady state” will continue in both experimental & control groups

● Infrastructure-level separation between experimental and control groups

Then:

● Inject a failure in the experimental group and observe

Chaos Engineering – Advanced Principles

● Risk management: focus on likely / impactful events

● Run experiments in production

● Automate: experiments should run periodically / continuously

● Minimize blast radius: users should not be impacted !

● Want tools & resources ?

https://github.com/dastergon/awesome-chaos-engineering

https://github.com/dastergon/awesome-chaos-engineering

	Slide 1: Decentralized Systems Engineering
	Slide 2: Software Quality for Decentralized and Distributed Systems
	Slide 3: Roadmap for the (intense) day
	Slide 4: Why You Should Care
	Slide 5
	Slide 6
	Slide 7: Of the Need to Manage Defects A $370 million example: Ariane 5 (1996)
	Slide 8: Of the Need to Manage Defects A deadly example: Therac-25 (1980s)
	Slide 9: Of the Need to Manage Defects A sinister example: Fujitsu Horizon (2000-2020)
	Slide 10: Quality – a definition
	Slide 11: Quality – a simpler view
	Slide 12
	Slide 13: Software Quality – How ?
	Slide 14: Software Quality
	Slide 15: Software Quality – Summary
	Slide 16: Managing Software Quality
	Slide 17: Managing Software Projects
	Slide 18: Software Development Lifecycle A reminder
	Slide 19: Quality and Cost – A Balancing Act
	Slide 20: Quality and Cost A balancing act
	Slide 21: Quality and Cost Technical debt
	Slide 22: Quality and Cost Technical debt
	Slide 23: Requirements & Specifications
	Slide 24: Architecture & Design
	Slide 25: Architecture & Design UML ?
	Slide 26: Architecture & Design Component diagram?
	Slide 27: Architecture & Design Layered ? Ad-hoc ?
	Slide 28
	Slide 29: Architecture & Design
	Slide 30: Implementation – Why Clean Code Matters
	Slide 31: Testing – Because your code is buggy (& mine too)
	Slide 32: Testing The Pyramid
	Slide 33: Deployment – Because your code is still buggy !
	Slide 34: Observability – Traces
	Slide 35: Managing Software Quality – Summary
	Slide 36: Testing and Breaking Stuff !
	Slide 37: Testing basics
	Slide 38
	Slide 39: Psychology of testing – mindset matters
	Slide 40: The (Manual) Test Case Documenting the what with the how
	Slide 41: Automated Tests – the “right” way
	Slide 42: Manual vs Automatic testing A clear trade-off
	Slide 43: Naive test case automation What if replaced testers with computers?
	Slide 44: Quality and Cost A reminder
	Slide 45: Metrics if you can’t measure it, you can’t improve it!
	Slide 46: Review of basic concepts
	Slide 47: Unit testing Dealing with coupling
	Slide 48: Unit testing – Outcomes
	Slide 49: Mocks, Stubs, Fakes A word about terminology
	Slide 50: Language Tooling How to make this work
	Slide 51: Integration testing Dealing with coupling
	Slide 52: Integration Testing Key points
	Slide 53: Integration Testing A few examples
	Slide 54: End-to-End Testing Key points
	Slide 55: Property-Based Testing
	Slide 56: Property-Based Testing An arithmetic example
	Slide 57: Question time !
	Slide 58: Distributed & Decentralized Testing
	Slide 59: Basic Good Practices
	Slide 60: Distributed System Tests So many parameters ...
	Slide 61
	Slide 62: Challenges in distributed / decentralized systems
	Slide 63: Jepsen – Testing Distributed Storage Systems
	Slide 64: Testing (Permissioned) Blockchain Nodes
	Slide 65: Case Study – Netflix
	Slide 66: Case Study – Netflix
	Slide 67: Chaos Monkey & Chaos Kong
	Slide 68: Chaos Kong – A Metrics Perspective
	Slide 69: Beyond Chaos – Fault Injection Testing
	Slide 70: Beyond Chaos – Fault Injection Testing
	Slide 71: Chaos Engineering
	Slide 72: Chaos Engineering – Advanced Principles

